38 integer,
parameter,
private :: radstream=0, fdisc=1, fdisc_cutoff=2
56 real(8),
allocatable,
private :: ay(:), wy(:), aphi(:), wphi(:)
59 real(8),
private :: cak_gamma
62 real(8),
private :: lum, dlum, drstar, dke, dclight
65 real(8),
private :: tfloor
79 character(len=*),
intent(in) :: files(:)
89 open(
unitpar, file=trim(files(n)), status=
"old")
90 read(
unitpar, cak_list,
end=111)
101 real(8),
intent(in) :: phys_gamma
103 cak_gamma = phys_gamma
116 gcak1_ = var_set_extravar(
"gcak1",
"gcak1")
117 fdf_ = var_set_extravar(
"fdfac",
"fdfac")
121 gcak1_ = var_set_extravar(
"gcak1",
"gcak1")
122 gcak2_ = var_set_extravar(
"gcak2",
"gcak2")
123 gcak3_ = var_set_extravar(
"gcak3",
"gcak3")
129 call mpistop(
'CAK error: choose alpha in [0,1[')
133 call mpistop(
'CAK error: chosen Qbar or Q0 is < 0')
137 call mpistop(
'CAK error: choose either 1-D or vector force')
147 real(8),
intent(in) :: rstar, twind
163 integer,
intent(in) :: ixI^L, ixO^L
164 real(8),
intent(in) :: qdt, x(ixI^S,1:ndim), wCT(ixI^S,1:nw)
165 real(8),
intent(inout) :: w(ixI^S,1:nw)
166 logical,
intent(in) :: energy, qsourcesplit
167 logical,
intent(inout) :: active
171 real(8) :: gl(ixO^S,1:3), ge(ixO^S), ptherm(ixI^S), pmin(ixI^S)
180 gl(ixo^s,1:3) = 0.0d0
187 call mpistop(
"No valid force option")
192 if (idir == 1) gl(ixo^s,idir) = gl(ixo^s,idir) + ge(ixo^s)
194 w(ixo^s,iw_mom(idir)) = w(ixo^s,iw_mom(idir)) &
195 + qdt * gl(ixo^s,idir) * wct(ixo^s,iw_rho)
198 w(ixo^s,iw_e) = w(ixo^s,iw_e) + qdt * gl(ixo^s,idir) * wct(ixo^s,iw_mom(idir))
204 call phys_get_pthermal(w,x,ixi^l,ixo^l,ptherm)
205 pmin(ixo^s) = w(ixo^s,iw_rho) * tfloor
207 where (ptherm(ixo^s) < pmin(ixo^s))
208 w(ixo^s,iw_e) = w(ixo^s,iw_e) + (pmin(ixo^s) - ptherm(ixo^s))/(cak_gamma - 1.0d0)
220 integer,
intent(in) :: ixI^L, ixO^L
221 real(8),
intent(in) :: wCT(ixI^S,1:nw), x(ixI^S,1:ndim)
222 real(8),
intent(inout) :: w(ixI^S,1:nw)
223 real(8),
intent(inout) :: gcak(ixO^S,1:3)
226 real(8) :: vr(ixI^S), dvrdr(ixO^S)
227 real(8) :: beta_fd(ixO^S), fdfac(ixO^S), taus(ixO^S), ge(ixO^S)
229 vr(ixi^s) = wct(ixi^s,iw_mom(1)) / wct(ixi^s,iw_rho)
232 if (physics_type ==
'hd')
then
234 dvrdr(ixo^s) = abs(dvrdr(ixo^s))
237 dvrdr(ixo^s) = max(dvrdr(ixo^s), smalldouble)
245 case(radstream, fdisc)
246 taus(ixo^s) =
gayley_qbar * dke * dclight * wct(ixo^s,iw_rho)/dvrdr(ixo^s)
251 taus(ixo^s) =
gayley_q0 * dke * dclight * wct(ixo^s,iw_rho)/dvrdr(ixo^s)
253 * ( (1.0d0 + taus(ixo^s))**(1.0d0 -
cak_alpha) - 1.0d0 ) &
256 call mpistop(
"Error in force computation.")
260 beta_fd(ixo^s) = ( 1.0d0 - vr(ixo^s)/(x(ixo^s,1) * dvrdr(ixo^s)) ) &
261 * (drstar/x(ixo^s,1))**2.0d0
266 case(fdisc, fdisc_cutoff)
267 where (beta_fd(ixo^s) >= 1.0d0)
269 elsewhere (beta_fd(ixo^s) < -1.0d10)
271 elsewhere (abs(beta_fd(ixo^s)) > 1.0
d-3)
272 fdfac(ixo^s) = (1.0d0 - (1.0d0 - beta_fd(ixo^s))**(1.0d0 +
cak_alpha)) &
275 fdfac(ixo^s) = 1.0d0 - 0.5d0*
cak_alpha*beta_fd(ixo^s) &
276 * (1.0d0 + 1.0d0/3.0d0 * (1.0d0 -
cak_alpha)*beta_fd(ixo^s))
281 gcak(ixo^s,1) = gcak(ixo^s,1) * fdfac(ixo^s)
282 gcak(ixo^s,2) = 0.0d0
283 gcak(ixo^s,3) = 0.0d0
286 w(ixo^s,
gcak1_) = gcak(ixo^s,1)
287 w(ixo^s,
fdf_) = fdfac(ixo^s)
297 integer,
intent(in) :: ixI^L, ixO^L
298 real(8),
intent(in) :: wCT(ixI^S,1:nw), x(ixI^S,1:ndim)
299 real(8),
intent(inout) :: w(ixI^S,1:nw)
300 real(8),
intent(inout) :: gcak(ixO^S,1:3)
303 integer :: ix^D, itray, ipray
304 real(8) :: a1, a2, a3, wyray, y, wpray, phiray, wtot, mustar, dvndn
305 real(8) :: costp, costp2, sintp, cospp, sinpp, cott0
306 real(8) :: vr(ixI^S), vt(ixI^S), vp(ixI^S)
307 real(8) :: vrr(ixI^S), vtr(ixI^S), vpr(ixI^S)
308 real(8) :: dvrdr(ixO^S), dvtdr(ixO^S), dvpdr(ixO^S)
309 real(8) :: dvrdt(ixO^S), dvtdt(ixO^S), dvpdt(ixO^S)
310 real(8) :: dvrdp(ixO^S), dvtdp(ixO^S), dvpdp(ixO^S)
313 vt(ixo^s) = 0.0d0; vtr(ixo^s) = 0.0d0
314 vp(ixo^s) = 0.0d0; vpr(ixo^s) = 0.0d0
316 dvrdr(ixo^s) = 0.0d0; dvtdr(ixo^s) = 0.0d0; dvpdr(ixo^s) = 0.0d0
317 dvrdt(ixo^s) = 0.0d0; dvtdt(ixo^s) = 0.0d0; dvpdt(ixo^s) = 0.0d0
318 dvrdp(ixo^s) = 0.0d0; dvtdp(ixo^s) = 0.0d0; dvpdp(ixo^s) = 0.0d0
321 vr(ixi^s) = wct(ixi^s,iw_mom(1)) / wct(ixi^s,iw_rho)
322 vrr(ixi^s) = vr(ixi^s) / x(ixi^s,1)
325 vt(ixi^s) = wct(ixi^s,iw_mom(2)) / wct(ixi^s,iw_rho)
326 vtr(ixi^s) = vt(ixi^s) / x(ixi^s,1)
329 vp(ixi^s) = wct(ixi^s,iw_mom(3)) / wct(ixi^s,iw_rho)
330 vpr(ixi^s) = vp(ixi^s) / x(ixi^s,1)
354 {
do ix^db=ixomin^db,ixomax^db\}
375 mustar = sqrt(max(1.0d0 - (drstar/x(ix^d,1))**2.0d0, 0.0d0))
376 costp = 1.0d0 - y*(1.0d0 - mustar)
378 sintp = sqrt(max(1.0d0 - costp2, 0.0d0))
381 {^nooned cott0 = cos(x(ix^d,2))/sin(x(ix^d,2))}
384 wtot = wyray * wpray * (1.0d0 - mustar)
392 dvndn = a1*a1 * dvrdr(ix^d) + a2*a2 * (dvtdt(ix^d) + vrr(ix^d)) &
393 + a3*a3 * (dvpdp(ix^d) + cott0 * vtr(ix^d) + vrr(ix^d)) &
394 + a1*a2 * (dvtdr(ix^d) + dvrdt(ix^d) - vtr(ix^d)) &
395 + a1*a3 * (dvpdr(ix^d) + dvrdp(ix^d) - vpr(ix^d)) &
396 + a2*a3 * (dvpdt(ix^d) + dvtdp(ix^d) - cott0 * vpr(ix^d))
403 gcak(ix^d,1) = gcak(ix^d,1) + (dvndn/wct(ix^d,iw_rho))**
cak_alpha * a1 * wtot
404 gcak(ix^d,2) = gcak(ix^d,2) + (dvndn/wct(ix^d,iw_rho))**
cak_alpha * a2 * wtot
405 gcak(ix^d,3) = gcak(ix^d,3) + (dvndn/wct(ix^d,iw_rho))**
cak_alpha * a3 * wtot
413 * dlum/(4.0d0*dpi*drstar**2.0d0 * dclight**(1.0d0+
cak_alpha)) &
417 gcak(ixo^s,2) = 0.0d0
418 gcak(ixo^s,3) = 0.0d0
422 w(ixo^s,
gcak1_) = gcak(ixo^s,1)
423 w(ixo^s,
gcak2_) = gcak(ixo^s,2)
424 w(ixo^s,
gcak3_) = gcak(ixo^s,3)
432 integer,
intent(in) :: ixI^L, ixO^L
433 real(8),
intent(in) :: w(ixI^S,1:nw), x(ixI^S,1:ndim)
434 real(8),
intent(out):: ge(ixO^S)
436 ge(ixo^s) = dke * dlum/(4.0d0*dpi * dclight * x(ixo^s,1)**2.0d0)
444 integer,
intent(in) :: ixI^L, ixO^L
445 real(8),
intent(in) :: dx^D, x(ixI^S,1:ndim)
446 real(8),
intent(in) :: w(ixI^S,1:nw)
447 real(8),
intent(inout) :: dtnew
450 real(8) :: ge(ixO^S), max_gr, dt_cak
457 max_gr = max( maxval(abs(ge(ixo^s) + w(ixo^s,
gcak1_))), epsilon(1.0d0) )
458 dt_cak = minval( sqrt(
block%dx(ixo^s,1)/max_gr) )
463 max_gr = max( maxval(abs(w(ixo^s,
gcak2_))), epsilon(1.0d0) )
464 dt_cak = minval( sqrt(
block%dx(ixo^s,1) *
block%dx(ixo^s,2)/max_gr) )
468 max_gr = max( maxval(abs(w(ixo^s,
gcak3_))), epsilon(1.0d0) )
469 dt_cak = minval( sqrt(
block%dx(ixo^s,1) * sin(
block%dx(ixo^s,3))/max_gr) )
481 integer,
intent(in) :: ixI^L, ixO^L, idir
482 real(8),
intent(in) :: vfield(ixI^S), x(ixI^S,1:ndim)
483 real(8),
intent(out) :: grad_vn(ixO^S)
486 real(8) :: forw(ixO^S), backw(ixO^S), cent(ixO^S)
487 integer :: jrx^L, hrx^L{^NOONED,jtx^L, htx^L}{^IFTHREED,jpx^L, hpx^L}
490 jrx^l=ixo^l+
kr(1,^
d);
491 hrx^l=ixo^l-
kr(1,^
d);
495 jtx^l=ixo^l+
kr(2,^
d);
496 htx^l=ixo^l-
kr(2,^
d);
501 jpx^l=ixo^l+
kr(3,^
d);
502 hpx^l=ixo^l-
kr(3,^
d);
508 forw(ixo^s) = (x(ixo^s,1) - x(hrx^s,1)) * vfield(jrx^s) &
509 / ((x(jrx^s,1) - x(ixo^s,1)) * (x(jrx^s,1) - x(hrx^s,1)))
511 backw(ixo^s) = -(x(jrx^s,1) - x(ixo^s,1)) * vfield(hrx^s) &
512 / ((x(ixo^s,1) - x(hrx^s,1)) * (x(jrx^s,1) - x(hrx^s,1)))
514 cent(ixo^s) = (x(jrx^s,1) + x(hrx^s,1) - 2.0d0*x(ixo^s,1)) * vfield(ixo^s) &
515 / ((x(ixo^s,1) - x(hrx^s,1)) * (x(jrx^s,1) - x(ixo^s,1)))
518 forw(ixo^s) = (x(ixo^s,2) - x(htx^s,2)) * vfield(jtx^s) &
519 / (x(ixo^s,1) * (x(jtx^s,2) - x(ixo^s,2)) * (x(jtx^s,2) - x(htx^s,2)))
521 backw(ixo^s) = -(x(jtx^s,2) - x(ixo^s,2)) * vfield(htx^s) &
522 / ( x(ixo^s,1) * (x(ixo^s,2) - x(htx^s,2)) * (x(jtx^s,2) - x(htx^s,2)))
524 cent(ixo^s) = (x(jtx^s,2) + x(htx^s,2) - 2.0d0*x(ixo^s,2)) * vfield(ixo^s) &
525 / ( x(ixo^s,1) * (x(ixo^s,2) - x(htx^s,2)) * (x(jtx^s,2) - x(ixo^s,2)))
529 forw(ixo^s) = (x(ixo^s,3) - x(hpx^s,3)) * vfield(jpx^s) &
530 / ( x(ixo^s,1)*sin(x(ixo^s,2)) * (x(jpx^s,3) - x(ixo^s,3)) * (x(jpx^s,3) - x(hpx^s,3)))
532 backw(ixo^s) = -(x(jpx^s,3) - x(ixo^s,3)) * vfield(hpx^s) &
533 / ( x(ixo^s,1)*sin(x(ixo^s,2)) * (x(ixo^s,3) - x(hpx^s,3)) * (x(jpx^s,3) - x(hpx^s,3)))
535 cent(ixo^s) = (x(jpx^s,3) + x(hpx^s,3) - 2.0d0*x(ixo^s,3)) * vfield(ixo^s) &
536 / ( x(ixo^s,1)*sin(x(ixo^s,2)) * (x(ixo^s,3) - x(hpx^s,3)) * (x(jpx^s,3) - x(ixo^s,3)))
541 grad_vn(ixo^s) = backw(ixo^s) + cent(ixo^s) + forw(ixo^s)
550 integer,
intent(in) :: ntheta_point, nphi_point
553 real(8) :: ymin, ymax, phipmin, phipmax, adum
565 allocate(ay(ntheta_point))
566 allocate(wy(ntheta_point))
567 allocate(aphi(nphi_point))
568 allocate(wphi(nphi_point))
593 print*,
'==========================='
594 print*,
' Radiation ray setup '
595 print*,
'==========================='
596 print*,
'Theta ray points + weights '
597 do ii = 1,ntheta_point
598 print*,ii,ay(ii),wy(ii)
601 print*,
'Phi ray points + weights '
603 print*,ii,aphi(ii),wphi(ii)
614 call mpi_bcast(ntheta_point,1,mpi_integer,0,
icomm,
ierrmpi)
615 call mpi_bcast(nphi_point,1,mpi_integer,0,
icomm,
ierrmpi)
618 allocate(ay(ntheta_point))
619 allocate(wy(ntheta_point))
620 allocate(aphi(nphi_point))
621 allocate(wphi(nphi_point))
624 call mpi_bcast(ay,ntheta_point,mpi_double_precision,0,
icomm,
ierrmpi)
625 call mpi_bcast(wy,ntheta_point,mpi_double_precision,0,
icomm,
ierrmpi)
626 call mpi_bcast(aphi,nphi_point,mpi_double_precision,0,
icomm,
ierrmpi)
627 call mpi_bcast(wphi,nphi_point,mpi_double_precision,0,
icomm,
ierrmpi)
640 real(8),
intent(in) :: xlow, xhi
641 integer,
intent(in) :: n
642 real(8),
intent(out) :: x(n), w(n)
646 real(8) :: p1, p2, p3, pp, xl, xm, z, z1
647 real(8),
parameter :: error=3.0
d-14
650 xm = 0.5d0*(xhi + xlow)
651 xl = 0.5d0*(xhi - xlow)
654 z = cos( dpi * (i - 0.25d0)/(n + 0.5d0) )
657 do while (abs(z1 - z) > error)
664 p1 = ( (2.0d0*j - 1.0d0)*z*p2 - (j - 1.0d0)*p3 )/j
667 pp = n*(z*p1 - p2) / (z*z - 1.0d0)
674 w(i) = 2.0d0*xl / ((1.0d0 - z*z) * pp*pp)
Module to include CAK radiation line force in (magneto)hydrodynamic models Computes both the force fr...
subroutine get_gelectron(ixIL, ixOL, w, x, ge)
Compute continuum radiation force from Thomson scattering.
real(8), public gayley_qbar
subroutine get_velocity_gradient(ixIL, ixOL, vfield, x, idir, grad_vn)
Compute velocity gradient in direction 'idir' on a non-uniform grid.
real(8), public gayley_q0
subroutine cak_get_dt(w, ixIL, ixOL, dtnew, dxD, x)
Check time step for total radiation contribution.
logical cak_split
To treat source term in split or unsplit (default) fashion.
subroutine cak_init(phys_gamma)
Initialize the module.
subroutine cak_params_read(files)
Public method.
subroutine gauss_legendre_quadrature(xlow, xhi, n, x, w)
Fast Gauss-Legendre N-point quadrature algorithm by G. Rybicki.
real(8), public cak_alpha
Line-ensemble parameters in the Gayley (1995) formalism.
subroutine, public set_cak_force_norm(rstar, twind)
Compute some (unitless) variables for CAK force normalisation.
subroutine get_cak_force_radial(ixIL, ixOL, wCT, w, x, gcak)
1-D CAK line force in the Gayley line-ensemble distribution parametrisation
logical fix_vector_force_1d
To activate the pure radial vector CAK line force computation.
integer gcak1_
Extra slots to store quantities in w-array.
logical cak_vector_force
To activate the vector CAK line force computation.
subroutine cak_add_source(qdt, ixIL, ixOL, wCT, w, x, energy, qsourcesplit, active)
w[iw]=w[iw]+qdt*S[wCT,qtC,x] where S is the source based on wCT within ixO
integer cak_1d_opt
Switch to choose between the 1-D CAK line force options.
subroutine get_cak_force_vector(ixIL, ixOL, wCT, w, x, gcak)
Vector CAK line force in the Gayley line-ensemble distribution parametrisation.
logical cak_1d_force
To activate the original CAK 1-D line force computation.
integer nthetaray
Amount of rays in radiation polar and radiation azimuthal direction.
subroutine rays_init(ntheta_point, nphi_point)
Initialise (theta',phi') radiation angles coming from stellar disc.
subroutine, public mpistop(message)
Exit MPI-AMRVAC with an error message.
Module for physical and numeric constants.
double precision, parameter dpi
Pi.
double precision, parameter const_kappae
double precision, parameter const_c
double precision, parameter const_sigma
This module contains definitions of global parameters and variables and some generic functions/subrou...
type(state), pointer block
Block pointer for using one block and its previous state.
double precision unit_time
Physical scaling factor for time.
double precision unit_density
Physical scaling factor for density.
integer, parameter unitpar
file handle for IO
integer, dimension(3, 3) kr
Kronecker delta tensor.
double precision unit_length
Physical scaling factor for length.
character(len=std_len), dimension(:), allocatable par_files
Which par files are used as input.
integer icomm
The MPI communicator.
integer mype
The rank of the current MPI task.
integer, dimension(:), allocatable, parameter d
integer ndir
Number of spatial dimensions (components) for vector variables.
double precision courantpar
The Courant (CFL) number used for the simulation.
integer ierrmpi
A global MPI error return code.
integer npe
The number of MPI tasks.
double precision unit_velocity
Physical scaling factor for velocity.
double precision unit_temperature
Physical scaling factor for temperature.
This module defines the procedures of a physics module. It contains function pointers for the various...
procedure(sub_get_pthermal), pointer phys_get_pthermal
character(len=name_len) physics_type
String describing the physics type of the simulation.
Module with all the methods that users can customize in AMRVAC.