|
| subroutine, public | mod_mf_phys::mf_phys_init () |
| |
| subroutine, public | mod_mf_phys::mf_to_conserved (ixil, ixol, w, x) |
| | Transform primitive variables into conservative ones.
|
| |
| subroutine, public | mod_mf_phys::mf_to_primitive (ixil, ixol, w, x) |
| | Transform conservative variables into primitive ones.
|
| |
| subroutine, public | mod_mf_phys::get_normalized_divb (w, ixil, ixol, divb) |
| | get dimensionless div B = |divB| * volume / area / |B|
|
| |
| subroutine, public | mod_mf_phys::get_current (w, ixil, ixol, idirmin, current, fourthorder) |
| | Calculate idirmin and the idirmin:3 components of the common current array make sure that dxlevel(^D) is set correctly.
|
| |
| subroutine, public | mod_mf_phys::mf_clean_divb_multigrid (qdt, qt, active) |
| |
| subroutine, public | mod_mf_phys::mf_face_to_center (ixol, s) |
| | calculate cell-center values from face-center values
|
| |
| subroutine, public | mod_mf_phys::b_from_vector_potential (ixisl, ixil, ixol, ws, x) |
| | calculate magnetic field from vector potential
|
| |
| subroutine, public | mod_mf_phys::record_force_free_metrics () |
| |
|
| double precision, public | mod_mf_phys::mf_nu = 1.d-15 |
| | viscosity coefficient in s cm^-2 for solar corona (Cheung 2012 ApJ)
|
| |
| double precision, public | mod_mf_phys::mf_vmax = 3.d6 |
| | maximal limit of magnetofrictional velocity in cm s^-1 (Pomoell 2019 A&A)
|
| |
| double precision, dimension(2 *^nd), public | mod_mf_phys::mf_decay_scale =0.d0 |
| | decay scale of frictional velocity near boundaries
|
| |
| double precision, public | mod_mf_phys::mf_glm_alpha = 0.5d0 |
| | GLM-MHD parameter: ratio of the diffusive and advective time scales for div b taking values within [0, 1].
|
| |
| double precision, public | mod_mf_phys::mf_eta = 0.0d0 |
| | The resistivity.
|
| |
| double precision, public | mod_mf_phys::mf_eta_hyper = 0.0d0 |
| | The hyper-resistivity.
|
| |
| double precision, public, protected | mod_mf_phys::he_abundance =0.1d0 |
| | Helium abundance over Hydrogen.
|
| |
| integer, dimension(:), allocatable, public, protected | mod_mf_phys::mom |
| | Indices of the momentum density.
|
| |
| integer, public, protected | mod_mf_phys::c |
| | Indices of the momentum density for the form of better vectorization.
|
| |
| integer, public, protected | mod_mf_phys::m |
| |
| integer, public, protected | mod_mf_phys::c_ |
| |
| integer, public, protected | mod_mf_phys::b |
| |
| integer, public, protected | mod_mf_phys::psi_ |
| | Indices of the GLM psi.
|
| |
| integer, dimension(2 *^nd), public, protected | mod_mf_phys::boundary_divbfix_skip =0 |
| | To skip * layer of ghost cells during divB=0 fix for boundary.
|
| |
| logical, public, protected | mod_mf_phys::mf_particles = .false. |
| | Whether particles module is added.
|
| |
| logical, public, protected | mod_mf_phys::mf_glm = .false. |
| | Whether GLM-MHD is used.
|
| |
| logical, public, protected | mod_mf_phys::source_split_divb = .false. |
| | Whether divB cleaning sources are added splitting from fluid solver.
|
| |
| logical, public, protected | mod_mf_phys::mf_4th_order = .false. |
| | MHD fourth order.
|
| |
| logical, public, protected | mod_mf_phys::mf_record_electric_field = .false. |
| | set to true if need to record electric field on cell edges
|
| |
| integer, public, protected | mod_mf_phys::mf_divb_nth = 1 |
| | Whether divB is computed with a fourth order approximation.
|
| |
| logical, dimension(2 *^nd), public, protected | mod_mf_phys::boundary_divbfix =.true. |
| | To control divB=0 fix for boundary.
|
| |
| logical, public | mod_mf_phys::divbwave = .true. |
| | Add divB wave in Roe solver.
|
| |
| logical, public, protected | mod_mf_phys::clean_initial_divb =.false. |
| | clean divb in the initial condition
|
| |
| character(len=std_len), public, protected | mod_mf_phys::typedivbfix = 'ct' |
| | Method type to clean divergence of B.
|
| |
| character(len=std_len), public, protected | mod_mf_phys::type_ct = 'average' |
| | Method type of constrained transport.
|
| |